A265385 Sequence defined by a(1)=a(2)=1 and a(n) = gray(a(n-1) + a(n-2)), with gray(m) = A003188(m).
1, 1, 3, 6, 13, 26, 52, 105, 211, 418, 847, 1673, 3380, 6755, 13404, 27104, 53538, 108163, 216183, 428935, 867329, 1713228, 3461227, 6917868, 13725948, 27754524, 54823316, 110759272, 221371778, 439230367, 888144817, 1754346232, 3544296957, 7083888783
Offset: 1
Keywords
A265386 Sequence defined by a(1)=a(2)=1 and a(n) = gray(gray(a(n-1)) + gray(a(n-2))), with gray(m) = A003188(m).
1, 1, 3, 2, 7, 4, 15, 9, 31, 19, 63, 39, 126, 79, 253, 158, 510, 315, 1012, 622, 2004, 1116, 4072, 2505, 8173, 5100, 16175, 10171, 32657, 20192, 64797, 39858, 128257, 71450, 260628, 160367, 523085, 326498, 1035105, 651126, 2090065, 1292517, 4146840
Offset: 1
Keywords
Comments
This recurrence is reminiscent of Fibonacci's, except that in each step the arguments as well as the result are passed through the binary-reflected Gray code mapping, which introduces a degree of pseudo-randomness.
Conjecture: the mean growth rate r(n) = (a(2n)/a(n))^(1/n) appears to converge to sqrt(2), with the consecutive-terms ratio s(n) = a(n)/a(n-1) exhibiting large and persistent fluctuations around the mean value.
Examples
r(10) = 1.417436..., r(1000) = 1.414393... s(100) = 0.629..., s(101) = 3.210..., s(102) = 0.618... s(10000) = 0.631..., s(10001) = 3.183..., s(10002) = 0.608...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..1000
- Wikipedia, Fibonacci number
- Wikipedia, Gray code
Programs
-
PARI
gray(m)=bitxor(m,m>>1); a=vector(1000);a[1]=1;a[2]=1;for(n=3,#a,a[n]=gray(gray(a[n-1])+gray(a[n-2])));a
Comments
Examples
Links
Crossrefs
Programs
PARI