A189226 Curvatures in the nickel-dime-quarter Apollonian circle packing, ordered first by generation and then by size.
-11, 21, 24, 28, 40, 52, 61, 157, 76, 85, 96, 117, 120, 132, 181, 213, 237, 376, 388, 397, 132, 156, 160, 189, 204, 205, 216, 237, 253, 285, 288, 309, 316, 336, 349, 405, 412, 421, 453, 460, 469, 472, 517, 544, 565, 616, 628, 685, 717, 741, 1084, 1093, 1104, 1125, 1128, 1140
Offset: 1
Examples
The 1st-generation curvatures are -11, 21, 24, 28, the 2nd are 40, 52, 61, 157, and the 3rd are 76, 85, 96, 117, 120, 132, 181, 213, 237, 376, 388, 397. The 4th generation begins 132, 156, 160, 189, 204, 205, 216, .... As 21 + 24 + 28 +- 2*sqrt(21*24 + 21*28 + 24*28) = 157 or -11, the sequence begins -11, 21, 24, 28, ... and 157 is in it. The primes 157 and 397 are the curvatures of two circles that are tangent.
Links
- D. Austin, When Kissing Involves Trigonometry, AMS feature column March 2006.
- J. Bourgain, Integral Apollonian circle packings and prime curvatures, arXiv:1105.5127 [math.NT], 2011-2012.
- J. Bourgain and A. Kontorovich, On the Strong Density Conjecture for Integral Apollonian Circle Packings, arXiv:1205.4416 [math.NT], 2012-2013. See figure 1.
- S. Butler, R. Graham, G. Guettler and C. Mallows, Irreducible Apollonian configurations and packings, Discrete & Computational Geometry, 44 (2010), 487-507.
- E. Fuchs, Arithmetic Properties of Apollonian Circle Packings, Ph.D. thesis 2009.
- E. Fuchs and K. Sanden, Some experiments with integral Apollonian circle packings, Experiment. Math. 20 (2011), 380-399.
- R. L. Graham, J. C. Lagarias, C. L. Mallows, Allan Wilks, and C. H. Yan, Apollonian Circle Packings: Number Theory, J. Number Theory, 100 (2003), 1-45.
- R. L. Graham, J. C. Lagarias, C. L. Mallows, Allan Wilks, and C. H. Yan, Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group., Discrete & Computational Geometry, 34 (2005), no. 4, 547-585.
- K. E. Hirst, The Apollonian Packing of Circles, J. London Math. Soc. s1-42(1) (1967), 281-291.
- E. Kasner and F. Supnick, The Apollonian packing of circles, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 378-384.
- A. Kontorovich, From Apollonius to Zaremba: Local-global phenomena in thin orbits, Bull. Amer. Math. Soc., 50 (2013), 187-228.
- J. C. Lagarias, C. L. Mallows, and Allan Wilks, Beyond the Descartes Circle Theorem, Amer. Math Monthly, 109 (2002), 338-361.
- L. Levine, W. Pegden, C. K. Smart, Apollonian Structure in the Abelian Sandpile, arXiv:1208.4839 [math.AP], 2012-2014.
- D. Mackenzie, A Tisket, a Tasket, an Apollonian Gasket, American Scientist, 98 (2010).
- C. L. Mallows, Growing Apollonian Packings, J. Integer Sequences, 12 (2009), article 09.2.1.
- I. Peterson, Circle game, Science News, 4/21/01.
- I. Peterson, Temple circles, Math Trek, 4/23/01.
- P. Sarnak, Letter to Lagarias on integral Apollonian packings, June, 2007.
- P. Sarnak, Integral Apollonian packings, MAA Lecture, Jan 2009.
- P. Sarnak, Integral Apollonian packings, Amer. Math. Monthly, 118 (2011), 291-306.
- K. E. Stange, The sensual Apollonian circle packing, arXiv:1208.4836 [math.NT], 2012-2014.
- Wikipedia, Integral Apollonian circle packings
- Wikipedia, Descartes' theorem
Crossrefs
Programs
-
Mathematica
root = {-11, 21, 24, 28}; triples = Subsets[root, {3}]; a = {root}; Do[ ng = Table[Total@t + 2 Sqrt@Total[Times @@@ Subsets[t, {2}]], {t, triples}]; AppendTo[a, Sort@ng]; triples = Join @@ Table[{t, r} = tr; Table[Append[p, r], {p, Subsets[t, {2}]}], {tr, Transpose@{triples, ng}}] , {k, 3}]; Flatten@a (* Andrey Zabolotskiy, May 29 2022 *)
Formula
a(n) == 0, 4, 12, 13, 16, or 21 (mod 24).
Extensions
Terms a(28) and beyond from Andrey Zabolotskiy, May 29 2022
Comments