This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265496 #44 Sep 21 2023 19:25:29 %S A265496 1,2,3,1,3,3,6,3,18,6,24,18,432,24,456,432,196992,456,197448,196992, %T A265496 38895676416,197448,38895873864,38895676416,1512881323731695591424, %U A265496 38895873864,1512881323770591465288,1512881323731695591424,2288809899755012359448064967916189926490112 %N A265496 Numbers n resulting from alternately applying the operations +, -, *, / to the last term and second to last term. %F A265496 a(n) = n+1 for n in {0, 1}, otherwise %F A265496 a(n+1) = a(n) + a(n-1) if n mod 4 = 1, %F A265496 a(n+1) = a(n) - a(n-1) if n mod 4 = 2, %F A265496 a(n+1) = a(n) * a(n-1) if n mod 4 = 3, %F A265496 a(n+1) = a(n) / a(n-1) if n mod 4 = 0. %F A265496 From _Robert Israel_, Dec 22 2015: (Start) %F A265496 a(4n+8) = a(4n+4)^2*(1+1/a(4n)). %F A265496 a(4n+9) = a(4n+5)*(a(4n+5)+a(4n+1)+1). %F A265496 a(4n+10) = a(4n+6)*(a(4n+6)-a(4n+2)+1). %F A265496 a(4n+11) = a(4n+7)^2*(1+1/a(4n+3)). (End) %e A265496 a(0) = 1. %e A265496 a(1) = 2. %e A265496 a(2) = a(1) + a(0) = 2 + 1 = 3. %e A265496 a(3) = a(2) - a(1) = 3 - 2 = 1. %e A265496 a(4) = a(3) * a(2) = 1 * 3 = 3. %e A265496 a(5) = a(4) / a(3) = 3 / 1 = 3. %e A265496 a(6) = a(5) + a(4) = 3 + 3 = 6. %e A265496 a(7) = a(6) - a(5) = 6 - 3 = 3. %e A265496 a(8) = a(7) * a(6) = 3 * 6 = 18. %e A265496 a(9) = a(8) / a(7) = 18 / 3 = 6. %p A265496 f:= proc(n) option remember; %p A265496 if n mod 4 = 2 then procname(n-1)+procname(n-2) %p A265496 elif n mod 4 = 3 then procname(n-1)-procname(n-2) %p A265496 elif n mod 4 = 0 then procname(n-1)*procname(n-2) %p A265496 else procname(n-3) %p A265496 fi %p A265496 end proc: %p A265496 f(0):= 1: f(1):= 2: %p A265496 seq(f(i),i=0..20); # _Robert Israel_, Dec 22 2015 %t A265496 a[0] = 1; a[1] = 2; a[x_] := a[x] = Which[Mod[x, 4] == 2, a[x - 1] + a[x - 2], Mod[x, 4] == 3, a[x - 1] - a[x - 2], Mod[x, 4] == 0, a[x - 1] a[x - 2], Mod[x, 4] == 1, a[x - 1]/a[x - 2]]; Table[a@ n, {n, 0, 30}] (* _Michael De Vlieger_, Dec 22 2015 *) %o A265496 (BASIC) %o A265496 input a(0) %o A265496 input a(1) %o A265496 for n=1 to 1000 %o A265496 begin %o A265496 if n mod 4 =1 then a(n+1):=a(n)+a(n-1) %o A265496 if n mod 4 =2 then a(n+1):=a(n)-a(n-1) %o A265496 if n mod 4 =3 then a(n+1):=a(n)*a(n-1) %o A265496 if n mod 4 =0 then a(n+1):=a(n)/a(n-1) %o A265496 print a(n+1) %o A265496 end %o A265496 (PARI) lista(nn) = {print1(x = 1, ", "); print1(y = 2, ", "); for (n=1, nn, if (n % 4 == 1, z = x+y); if (n % 4 == 2, z = y-x); if (n % 4 == 3, z = x*y); if (n % 4 == 0, z = y/x); print1(z, ", "); x = y; y = z;);} \\ _Michel Marcus_, Dec 22 2015 %Y A265496 Cf. A131183. %K A265496 nonn,easy %O A265496 0,2 %A A265496 _Florent Martigne_, Dec 09 2015