A265501 Practical numbers that are squarefree.
1, 2, 6, 30, 42, 66, 78, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1110, 1122, 1218, 1230, 1254, 1290, 1302, 1326, 1410, 1482, 1518, 1554, 1590, 1722, 1770, 1794, 1806, 1830, 1914, 1974, 2010, 2046, 2130, 2190, 2226, 2262, 2310
Offset: 1
Keywords
Examples
a(4) = 30 = 2*3*5. It is squarefree and has 7 aliquot divisors: (1, 2, 3, 5, 6, 10, 15). All positive integers less than 30 can be represented by sums of distinct members of this set so 30 is therefore a practical number. It is the fourth such occurrence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Carl Pomerance, Lola Thompson, and Andreas Weingartner, On integers n for which X^n-1 has a divisor of every degree, Acta Arithmetica 175 (2016), 225-243; arXiv preprint, arXiv:1511.03357 [math.NT], 2015.
- Eric Saias, Entiers à diviseurs denses 1, Journal of Number Theory, Vol. 62, No. 1 (1997), pp. 163-191.
- Andreas Weingartner, On the constant factor in several related asymptotic estimates, Math. Comp., Vol. 88, No. 318 (2019), pp. 1883-1902; arXiv preprint, arXiv:1705.06349 [math.NT], 2017-2018.
- Andreas Weingartner, The constant factor in the asymptotic for practical numbers, Int. J. Number Theory, 16 (2020), no. 3, 629-638; arXiv preprint, arXiv:1906.07819 [math.NT], 2019.
Programs
-
Mathematica
practicalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1||(n > 1 && OddQ[n])||(n > 2 && Mod[n, 4] != 0 && Mod[n, 6] != 0), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod * p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Select[practicalQ][Select[SquareFreeQ][Range[2500]]]
-
PARI
is_pr(n)=bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return); for(n=1, 10^4, if(is_pr(n) && issquarefree(n), print1(n, ", "))) \\ Altug Alkan, Dec 10 2015
Formula
a(n) = C*n*log(n*log(n)) + O(n), where C = 11.447... (see comments). - Andreas Weingartner, Jan 24 2025
Comments