This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265507 #19 Feb 07 2016 20:06:31 %S A265507 1,1,0,0,1,0,1,0,1,0,2,0,1,0,0,1,0,0,1,0,5,0,0,2,0,4,0,0,1,0,0,0,1,0, %T A265507 0,0,2,0,8,0,1,0,9,0,10,0,2,0,8,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,13,0,0, %U A265507 1,0,13,0,36,0,0,3,0,23,0,24,0,0,3,0,12,0 %N A265507 A pyramid T(n,p,k) of square arrays read by rows relating semimeanders(n), positive arches(p) and components(k). %C A265507 A positive arch is defined as a top arch that starts at an odd-numbered vertex and ends at a higher even-numbered vertex. %C A265507 For each value of n there is a square array with n^2 elements. %C A265507 Rows are in order of decreasing number of components. %C A265507 The sum of all the elements in each square array(n) = Catalan numbers C(n) A000108. %C A265507 The sum of columns for array(n) = Semimeander components row(n) A046726. %C A265507 The sum of the rows for array(n) = Narayana numbers T(n,k) A001263. %C A265507 All semimeander solutions (k=1) for array n have positive arches = floor((n+2)/2). %e A265507 For n=3: /\ /\ %e A265507 /\ /\ / \ //\\ %e A265507 / \ / \ / \ // \\ %e A265507 /\ /\ /\ / /\ \ /\ /\ / /\ \ //\ /\\ // /\ \\ %e A265507 \ \\// / \ \ \/ / / \ \ \/ / / \\ \/ // \\ \/ // %e A265507 \ \/ / \ \ / / \ \ / / \\ // \\ // %e A265507 \ / \ \/ / \ \/ / \\// \\// %e A265507 \/ \ / \ / \/ \/ %e A265507 \/ \/ %e A265507 p=3,k=2 p=2,k=1 p=2,k=1 p=1,k=2 p=2,k=3. %e A265507 . %e A265507 n=3 p\k 3 2 1 n=9 p\k 9 8 7 6 5 4 3 2 1 %e A265507 1: 0 1 0 1: 0 0 0 0 1 0 0 0 0 %e A265507 2: 1 0 2 2: 0 0 0 4 0 32 0 0 0 %e A265507 3: 0 1 0 3: 0 0 6 0 78 0 252 0 0 %e A265507 4: 0 4 0 72 0 446 0 654 0 %e A265507 5: 1 0 29 0 280 0 950 0 504 %e A265507 6: 0 4 0 72 0 446 0 654 0 %e A265507 7: 0 0 6 0 78 0 252 0 0 %e A265507 8: 0 0 0 4 0 32 0 0 0 %e A265507 9: 0 0 0 0 1 0 0 0 0 %Y A265507 Cf. A000108, A001263, A046726. %K A265507 nonn,tabf %O A265507 1,11 %A A265507 _Roger Ford_, Dec 09 2015