This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265509 #22 Aug 23 2016 12:42:10 %S A265509 1,3,5,7,9,9,9,15,17,17,21,21,17,27,21,31,33,33,33,33,33,33,45,45,33, %T A265509 51,33,51,33,51,45,63,65,65,65,65,73,73,73,73,65,65,85,85,73,73,93,93, %U A265509 65,99,65,99,73,107,73,107,65,99,85,119,73,107,93,127,129,129,129,129,129,129,129,129,129,129,129,129,153 %N A265509 a(n) = largest base-2 palindrome m <= 2n+1 such that every base-2 digit of m is <= the corresponding digit of 2n+1; m is written in base 10. %C A265509 A007088(a(n)) = A265510(n). - _Reinhard Zumkeller_, Dec 11 2015 %H A265509 Reinhard Zumkeller, <a href="/A265509/b265509.txt">Table of n, a(n) for n = 0..8191</a> %p A265509 ispal := proc(n) # test for base-b palindrome %p A265509 local L, Ln, i; %p A265509 global b; %p A265509 L := convert(n, base, b); %p A265509 Ln := nops(L); %p A265509 for i to floor(1/2*Ln) do %p A265509 if L[i] <> L[Ln + 1 - i] then return false end if %p A265509 end do; %p A265509 return true %p A265509 end proc %p A265509 # find max pal <= n and in base-b shadow of n, write in base 10 %p A265509 under10:=proc(n) global b; %p A265509 local t1,t2,i,m,sw1,L2; %p A265509 if n mod b = 0 then return(0); fi; %p A265509 t1:=convert(n,base,b); %p A265509 for m from n by -1 to 0 do %p A265509 if ispal(m) then %p A265509 t2:=convert(m,base,b); %p A265509 L2:=nops(t2); %p A265509 sw1:=1; %p A265509 for i from 1 to L2 do %p A265509 if t2[i] > t1[i] then sw1:=-1; break; fi; %p A265509 od: %p A265509 if sw1=1 then return(m); fi; %p A265509 fi; %p A265509 od; %p A265509 end proc; %p A265509 b:=2; [seq(under10(2*n+1),n=0..144)]; # Gives A265509 %p A265509 # find max pal <= n and in base-b shadow of n, write in base b %p A265509 underb:=proc(n) global b; %p A265509 local t1,t2,i,m,mb,sw1,L2; %p A265509 if n mod b = 0 then return(0); fi; %p A265509 t1:=convert(n,base,b); %p A265509 for m from n by -1 to 0 do %p A265509 if ispal(m) then %p A265509 t2:=convert(m,base,b); %p A265509 L2:=nops(t2); %p A265509 sw1:=1; %p A265509 for i from 1 to L2 do %p A265509 if t2[i] > t1[i] then sw1:=-1; break; fi; %p A265509 od: %p A265509 if sw1=1 then mb:=add(t2[i]*10^(i-1), i=1..L2); return(mb); fi; %p A265509 fi; %p A265509 od; %p A265509 end proc; %p A265509 b:=2; [seq(underb(2*n+1),n=0..144)]; # Gives A265510 %t A265509 A265509 = FromDigits[Min /@ Transpose[{#, Reverse@#}], 2] &@IntegerDigits[2 # + 1, 2] & (* _JungHwan Min_, Aug 22 2016 *) %o A265509 (Haskell) %o A265509 a265509 n = a265509_list !! n %o A265509 a265509_list = f (tail a030308_tabf) [[]] where %o A265509 f (bs:_:bss) pss = y : f bss pss' where %o A265509 y = foldr (\d v -> 2 * v + d) 0 ys %o A265509 (ys:_) = dropWhile (\ps -> not $ and $ zipWith (<=) ps bs) pss' %o A265509 pss' = if bs /= reverse bs then pss else bs : pss %o A265509 -- _Reinhard Zumkeller_, Dec 11 2015 %Y A265509 Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509. %Y A265509 Cf. A007088, A030308. %K A265509 nonn,base,look %O A265509 0,2 %A A265509 _N. J. A. Sloane_, Dec 09 2015