This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265526 #10 Dec 09 2015 22:18:40 %S A265526 0,1,1,11,11,101,101,111,111,1001,1001,1001,1001,1001,1001,1111,1111, %T A265526 10001,10001,10001,10001,10101,10101,10101,10101,10101,10101,11011, %U A265526 11011,11011,11011,11111,11111,100001,100001,100001,100001,100001,100001,100001,100001,100001,100001,100001,100001,101101,101101,101101 %N A265526 Largest base-2 palindrome m <= n, written in base 2. %p A265526 ispal:= proc(n) global b; # test for base-b palindrome %p A265526 local L, Ln, i; %p A265526 L:= convert(n, base, b); %p A265526 Ln:= nops(L); %p A265526 for i from 1 to floor(Ln/2) do %p A265526 if L[i] <> L[Ln+1-i] then return(false); fi; %p A265526 od: %p A265526 return(true); %p A265526 end proc; %p A265526 # find max pal <= n, write in base 10 %p A265526 less10:=proc(n) global b; %p A265526 local t1,t2,i,m,sw1,L2; %p A265526 t1:=convert(n,base,b); %p A265526 for m from n by -1 to 0 do %p A265526 if ispal(m) then return(m); fi; %p A265526 od; %p A265526 end proc; %p A265526 # find max pal <= n, write in base b %p A265526 lessb:=proc(n) global b; %p A265526 local t1,t2,i,m,mb,sw1,L2; %p A265526 t1:=convert(n,base,b); %p A265526 for m from n by -1 to 0 do %p A265526 if ispal(m) then %p A265526 t2:=convert(m,base,b); %p A265526 L2:=nops(t2); %p A265526 mb:=add(t2[i]*10^(i-1), i=1..L2); return(mb); fi; %p A265526 od; %p A265526 end proc; %p A265526 b:=2; %p A265526 [seq(less10(n),n=0..100)]; # A206913 %p A265526 [seq(lessb(n),n=0..100)]; # A265526 %p A265526 [seq(less10(2*n),n=0..100)]; # A265527 %p A265526 [seq(lessb(2*n),n=0..100)]; # A265528 %p A265526 b:=10; %p A265526 [seq(less10(n),n=0..100)]; # A261423 %Y A265526 Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509. %K A265526 nonn,base %O A265526 0,4 %A A265526 _N. J. A. Sloane_, Dec 09 2015