This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265543 #13 Oct 15 2017 19:27:54 %S A265543 0,1,11,11,101,101,111,111,1001,1001,1111,1111,1111,1111,1111,1111, %T A265543 10001,10001,11011,11011,10101,10101,11111,11111,11011,11011,11011, %U A265543 11011,11111,11111,11111,11111,100001,100001,110011,110011,101101,101101,111111,111111,101101,101101,111111,111111,101101,101101,111111 %N A265543 a(n) = smallest base-2 palindrome m >= n such that every base-2 digit of n is <= the corresponding digit of m; m is written in base 2. %p A265543 ispal:= proc(n) global b; # test if n is base-b palindrome %p A265543 local L, Ln, i; %p A265543 L:= convert(n, base, b); %p A265543 Ln:= nops(L); %p A265543 for i from 1 to floor(Ln/2) do %p A265543 if L[i] <> L[Ln+1-i] then return(false); fi; %p A265543 od: %p A265543 return(true); %p A265543 end proc; %p A265543 # find min pal >= n and with n in base-b shadow, write in base 10 %p A265543 over10:=proc(n) global b; %p A265543 local t1,t2,i,m,sw1,L1; %p A265543 t1:=convert(n,base,b); %p A265543 L1:=nops(t1); %p A265543 for m from n to 10*n do %p A265543 if ispal(m) then %p A265543 t2:=convert(m,base,b); %p A265543 sw1:=1; %p A265543 for i from 1 to L1 do %p A265543 if t1[i] > t2[i] then sw1:=-1; break; fi; %p A265543 od: %p A265543 if sw1=1 then return(m); fi; %p A265543 fi; %p A265543 od; %p A265543 lprint("no solution in over10 for n = ", n); %p A265543 end proc; %p A265543 # find min pal >= n and with n in base-b shadow, write in base 10 %p A265543 overb:=proc(n) global b; %p A265543 local t1,t2,i,m,mb,sw1,L1; %p A265543 t1:=convert(n,base,b); %p A265543 L1:=nops(t1); %p A265543 for m from n to 10*n do %p A265543 if ispal(m) then %p A265543 t2:=convert(m,base,b); %p A265543 sw1:=1; %p A265543 for i from 1 to L1 do %p A265543 if t1[i] > t2[i] then sw1:=-1; break; fi; %p A265543 od: %p A265543 if sw1=1 then mb:=add(t2[i]*10^(i-1), i=1..nops(t2)); return(mb); fi; %p A265543 fi; %p A265543 od; %p A265543 lprint("no solution in over10 for n = ", n); %p A265543 end proc; %p A265543 b:=2; %p A265543 [seq(over10(n),n=0..144)]; # A175298 %p A265543 [seq(overb(n),n=0..144)]; # A265543 %t A265543 sb2p[n_]:=Module[{m=n},While[!PalindromeQ[IntegerDigits[m,2]]|| Min[ IntegerDigits[ m,2]-IntegerDigits[n,2]]<0,m++];FromDigits[ IntegerDigits[ m,2]]]; Array[sb2p,50,0] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Oct 15 2017 *) %Y A265543 Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509. %Y A265543 See A206913 for the values of m written in base 10. %K A265543 nonn,base %O A265543 0,3 %A A265543 _N. J. A. Sloane_, Dec 09 2015