A265574 LCM-transform of triangular numbers.
1, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97, 1
Offset: 1
Keywords
Links
- A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.
- A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.
Programs
-
Maple
LCMXfm:=proc(a) local L,i,n,g,b; L:=nops(a); g:=Array(1..L,0); b:=Array(1..L,0); b[1]:=a[1]; g[1]:=a[1]; for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od; lprint([seq(b[i],i=1..L)]); end; t1:=[seq(n*(n+1)/2,n=1..100)]; LCMXfm(t1);
-
Mathematica
LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]]; LCMXfm[Table[n*(n + 1)/2, {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)
Formula
From Andrey Zabolotskiy, Apr 11 2020: (Start)
a(n) = A051543(n-1) for n>1.
a(n) = A014963(n+1) for n>1. (End)