A265577 LCM-transform of Yellowstone permutation A098550.
1, 2, 3, 2, 3, 2, 5, 7, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 3, 11, 13, 1, 1, 1, 1, 1, 1, 17, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 19, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 3, 1, 29, 31, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.
- A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.
Programs
-
Maple
LCMXfm:=proc(a) local L,i,n,g,b; L:=nops(a); g:=Array(1..L,0); b:=Array(1..L,0); b[1]:=a[1]; g[1]:=a[1]; for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od; lprint([seq(b[i],i=1..L)]); end; # let t1 contain the first 100 terms of A098550 LCMXfm(t1);
-
Mathematica
LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n-1], a[[n]]]; b[n] = g[n]/g[n-1], {n, 2, L}]; Array[b, L]]; y[n_ /; n <= 3] := n; y[n_] := y[n] = For[k = 1, True, k++, If[ FreeQ[ Array[y, n-1], k], If[GCD[k, y[n-1]] == 1 && GCD[k, y[n-2]] > 1, Return[k]]]]; Yperm = Array[y, 100]; LCMXfm[Yperm] (* Jean-François Alcover, Dec 03 2017 *)