cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265577 LCM-transform of Yellowstone permutation A098550.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 7, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 3, 11, 13, 1, 1, 1, 1, 1, 1, 17, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 19, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 3, 1, 29, 31, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Crossrefs

Cf. A064413.
Other LCM-transforms are A061446, A265574, A265575, A265576.

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    # let t1 contain the first 100 terms of A098550
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n-1], a[[n]]]; b[n] = g[n]/g[n-1], {n, 2, L}]; Array[b, L]];
    y[n_ /; n <= 3] := n; y[n_] := y[n] = For[k = 1, True, k++, If[ FreeQ[ Array[y, n-1], k], If[GCD[k, y[n-1]] == 1 && GCD[k, y[n-2]] > 1, Return[k]]]];
    Yperm = Array[y, 100];
    LCMXfm[Yperm] (* Jean-François Alcover, Dec 03 2017 *)