cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265582 Number of (unlabeled) connected loopless multigraphs such that the sum of the numbers of vertices and edges is n.

This page as a plain text file.
%I A265582 #14 Feb 01 2020 22:39:20
%S A265582 1,1,0,1,1,2,3,6,10,21,41,87,187,423,971,2324,5668,14224,36506,95880,
%T A265582 257081,703616,1962887,5578529,16137942,47492141,142093854,432001458,
%U A265582 1333937382,4181500703,13301265585,42918900353,140423545125,465712099790,1565092655597
%N A265582 Number of (unlabeled) connected loopless multigraphs such that the sum of the numbers of vertices and edges is n.
%C A265582 Also the number of connected skeletal 2-cliquish graphs with n vertices. See Einstein et al. link below.
%C A265582 a(n) can be computed from A265580 and/or A265581, and partitions of n, by taking all loopless multigraphs (V,E) with |V| + |E| = n and subtracting out the disconnected ones.
%C A265582 a(n) <= A265580(n) except when n=1, and a(n) < A265580(n) for n>=6.
%H A265582 Andrew Howroyd, <a href="/A265582/b265582.txt">Table of n, a(n) for n = 0..100</a>
%H A265582 D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp and S. Rubinstein-Salzedo, <a href="https://arxiv.org/abs/1510.06362">Noncrossing partitions, toggles, and homomesies</a>, arXiv:1510.06362 [math.CO], 2015.
%F A265582 From _Andrew Howroyd_, Feb 01 2020: (Start)
%F A265582 a(n) = Sum_{k=1..ceiling(n/2)} A191646(n-k, k) for n > 0.
%F A265582 Inverse Euler transform of A265581. (End)
%e A265582 For n = 5, the a(5) = 2 such multigraphs are the graph with three vertices and edges from one vertex to each of the other two, and the graph with two vertices connected by three edges.
%o A265582 (PARI) \\ See A191646 for G, InvEulerMT.
%o A265582 seq(n)={my(v=InvEulerMT(vector((n+1)\2, k, 1 + y*Ser(G(k, n-1), y)))); Vec(1 + sum(i=1, #v, v[i]*y^i) + O(y*y^n))} \\ _Andrew Howroyd_, Feb 01 2020
%Y A265582 Cf. A191646, A265580, A265581.
%K A265582 nonn
%O A265582 0,6
%A A265582 _Michael Joseph_, Dec 10 2015
%E A265582 Terms a(19) and beyond from _Andrew Howroyd_, Feb 01 2020