A265604 Triangle read by rows: The inverse Bell transform of the quartic factorial numbers (A007696).
1, 0, 1, 0, 1, 1, 0, -2, 3, 1, 0, 10, -5, 6, 1, 0, -80, 30, -5, 10, 1, 0, 880, -290, 45, 5, 15, 1, 0, -12320, 3780, -560, 35, 35, 21, 1, 0, 209440, -61460, 8820, -735, 0, 98, 28, 1, 0, -4188800, 1192800, -167300, 14700, -735, 0, 210, 36, 1
Offset: 0
Examples
[ 1] [ 0, 1] [ 0, 1, 1] [ 0, -2, 3, 1] [ 0, 10, -5, 6, 1] [ 0, -80, 30, -5, 10, 1] [ 0, 880, -290, 45, 5, 15, 1]
Links
- Peter Luschny, The Bell transform
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
Crossrefs
Programs
-
Sage
# uses[bell_transform from A264428] def inverse_bell_matrix(generator, dim): G = [generator(k) for k in srange(dim)] row = lambda n: bell_transform(n, G) M = matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)]).inverse() return matrix(ZZ, dim, lambda n,k: (-1)^(n-k)*M[n,k]) multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1)) print(inverse_bell_matrix(multifact_4_1, 8))