cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265604 Triangle read by rows: The inverse Bell transform of the quartic factorial numbers (A007696).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, -2, 3, 1, 0, 10, -5, 6, 1, 0, -80, 30, -5, 10, 1, 0, 880, -290, 45, 5, 15, 1, 0, -12320, 3780, -560, 35, 35, 21, 1, 0, 209440, -61460, 8820, -735, 0, 98, 28, 1, 0, -4188800, 1192800, -167300, 14700, -735, 0, 210, 36, 1
Offset: 0

Views

Author

Peter Luschny, Dec 30 2015

Keywords

Examples

			[ 1]
[ 0,      1]
[ 0,      1,      1]
[ 0,     -2,      3,      1]
[ 0,     10,     -5,      6,      1]
[ 0,    -80,     30,     -5,     10,      1]
[ 0,    880,   -290,     45,      5,     15,      1]
		

Crossrefs

Inverse Bell transforms of other multifactorials are: A048993, A049404, A049410, A075497, A075499, A075498, A119275, A122848, A265605.

Programs

  • Sage
    # uses[bell_transform from A264428]
    def inverse_bell_matrix(generator, dim):
        G = [generator(k) for k in srange(dim)]
        row = lambda n: bell_transform(n, G)
        M = matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)]).inverse()
        return matrix(ZZ, dim, lambda n,k: (-1)^(n-k)*M[n,k])
    multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1))
    print(inverse_bell_matrix(multifact_4_1, 8))