A265605 Triangle read by rows: The inverse Bell transform of the triple factorial numbers (A007559).
1, 0, 1, 0, 1, 1, 0, -1, 3, 1, 0, 3, -1, 6, 1, 0, -15, 5, 5, 10, 1, 0, 105, -35, 0, 25, 15, 1, 0, -945, 315, -35, 0, 70, 21, 1, 0, 10395, -3465, 490, -35, 70, 154, 28, 1, 0, -135135, 45045, -6895, 630, -105, 378, 294, 36, 1
Offset: 0
Examples
[ 1] [ 0, 1] [ 0, 1, 1] [ 0, -1, 3, 1] [ 0, 3, -1, 6, 1] [ 0, -15, 5, 5, 10, 1] [ 0, 105, -35, 0, 25, 15, 1] [ 0, -945, 315, -35, 0, 70, 21, 1]
Links
- Peter Luschny, The Bell transform
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
Crossrefs
Programs
-
Sage
# uses[bell_transform from A264428] def inverse_bell_matrix(generator, dim): G = [generator(k) for k in srange(dim)] row = lambda n: bell_transform(n, G) M = matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)]).inverse() return matrix(ZZ, dim, lambda n,k: (-1)^(n-k)*M[n,k]) multifact_3_1 = lambda n: prod(3*k + 1 for k in (0..n-1)) print(inverse_bell_matrix(multifact_3_1, 8))