This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265624 #13 Dec 12 2015 08:06:46 %S A265624 1,1,2,1,4,3,0,8,9,4,0,14,27,16,5,0,26,78,64,25,6,0,48,228,252,125,36, %T A265624 7,0,88,666,996,620,216,49,8,0,162,1944,3936,3080,1290,343,64,9,0,298, %U A265624 5676,15552,15300,7710,2394,512,81,10,0,548,16572,61452 %N A265624 Array T(n,k): The number of words of length n in an alphabet of size k which do not contain 4 consecutive letters. %F A265624 T(2,k) = k^2. %F A265624 T(3,k) = k^3. %F A265624 T(4,k) = k*(k+1)*(k^2+3*k+3). %F A265624 T(5,k) = k*(k+1)*(k^3+4*k^2+6*k+2). %F A265624 T(6,k) = k*(k+1)^2*(k^3+4*k^2+6*k+1). %F A265624 G.f. of row k: k*x*(1+x+x^2)/(1+(1-k)*x*(x^2+x+1)). %e A265624 1 2 3 4 5 6 7 8 %e A265624 1 4 9 16 25 36 49 64 %e A265624 1 8 27 64 125 216 343 512 %e A265624 0 14 78 252 620 1290 2394 4088 %e A265624 0 26 228 996 3080 7710 16716 32648 %e A265624 0 48 666 3936 15300 46080 116718 260736 %e A265624 0 88 1944 15552 76000 275400 814968 2082304 %e A265624 0 162 5676 61452 377520 1645950 5690412 16629816 %p A265624 A265624 := proc(n,k) %p A265624 local x; %p A265624 k*x*(1+x+x^2)/(1+(1-k)*x*(x^2+x+1)) ; %p A265624 coeftayl(%,x=0,n) ; %p A265624 end proc; %p A265624 seq(seq(A265624(d-k,k),k=1..d-1),d=2..10) ; %Y A265624 Cf. A135491 (column k=2), A181137 (k=3), A188714 (k=4), A265583 (not 2 consecutive letters), A265584 (not 3 consecutive letters). %K A265624 nonn,tabl,easy %O A265624 1,3 %A A265624 _R. J. Mathar_, Dec 10 2015