This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265626 #8 Jan 01 2016 20:05:48 %S A265626 2,2,2,2,3,4,3,3,4,7,6,7,7,7,7,10,11,11,11,11,11,13,13,13,13,13,13,17, %T A265626 17,17,17,17,17,17,17,19,19,19,19,23,23,23,23,23,23,29,29,29,29,29,29, %U A265626 29,29,29,29,29,29,31,31,31,31,31,31,31,31,37,37 %N A265626 Let S be the set of factorizations of n! where the largest factor is the largest prime <= n, and let f(s) be the least factor in the factorization s. Then a(n) = max f(S). %F A265626 a(n) > 5 for n > 10. a(n) < A007918(ceiling(A007917(n)/2)). %e A265626 2! = 2 %e A265626 3! = 2 * 3 %e A265626 4! = 2^3 * 3 %e A265626 5! = 2 * 3 * 4 * 5 %e A265626 6! = 3^2 * 4^2 * 5 %e A265626 7! = 4 * 5 * 6^2 * 7 %e A265626 8! = 3 * 4^3 * 5 * 6 * 7 %e A265626 9! = 3 * 4^2 * 5 * 6^3 * 7 %e A265626 10! = 4^2 * 5^2 * 6^4 * 7 %e A265626 11! = 7 * 8^2 * 9^2 * 10^2 * 11 %e A265626 12! = 6^5 * 7 * 8 * 10^2 * 11 %e A265626 13! = 7 * 8^2 * 9^2 * 10^2 * 11 * 12 * 13 %e A265626 14! = 7^2 * 8 * 9 * 10^2 * 11 * 12^3 * 13 %e A265626 15! = 7^2 * 9 * 10^3 * 11 * 12^4 * 13 %e A265626 16! = 7^2 * 10^3 * 11 * 12^6 * 13 %e A265626 17! = 10 * 11 * 12^4 * 13 * 14^2 * 15^2 * 16 * 17 %o A265626 (PARI) f(n,mn,mx)=if(n%mn,return(0)); n/=mn; if(n==1, return(1)); for(k=mn,mx, if(f(n,k,mx), return(1))); 0 %o A265626 a(n)=if(n<6,return(2)); my(p=precprime(n),q=nextprime(p/2),N=n!); forprime(r=q+1,p-1, N/=r^valuation(N,r)); forstep(k=q,3,-1, if(f(N,k,p), return(k))) %Y A265626 Cf. A001055, A007917, A007918, A076716, A177333. %K A265626 nonn %O A265626 2,1 %A A265626 _Charles R Greathouse IV_, Dec 10 2015