This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265627 #19 Jul 25 2022 04:03:18 %S A265627 2,10,498,65040,33554370,68718945018,562949953421058, %T A265627 18446744065119682560,2417851639229258080977408, %U A265627 1267650600228227149696920981450,2658455991569831745807614120560685058,22300745198530623141526273539119741048774160 %N A265627 Number of n X n "primitive" binary matrices. %C A265627 A rectangular matrix is "primitive" in this sense if it cannot be expressed as a "tiling" of a single smaller matrix repeated in both directions. %C A265627 Thus, for example, the 2 X 2 matrix with both rows equal to [1,0] is not primitive, since it can "tiled" by a single row. %C A265627 This is the 2-dimensional generalization of A027375. %F A265627 A general formula for the number of m X n "primitive" matrices over an alphabet of size k is Sum_{d|m, e|n} k^{m*n/(d*e)}*mu(d)*mu(e), where mu is the Möbius function. %e A265627 We see a(2) = 10 since there are 16 possible 2 X 2 binary matrices, two are excluded because all their entries are the same, and four more are excluded because they are [[1,0],[1,0]] or a transpose or a negation. %p A265627 with(numtheory): %p A265627 prim := proc(k,m,n) option remember; %p A265627 dm := divisors(m); %p A265627 dn := divisors(n); %p A265627 s := 0; %p A265627 for d1 in dm do %p A265627 for d2 in dn do %p A265627 s := s+(k^(m*n/(d1*d2)))*mobius(d1)*mobius(d2); %p A265627 od; %p A265627 od; %p A265627 s; %p A265627 end: %p A265627 seq(prim(2,n,n), n=1..40); %t A265627 prim[k_, m_, n_] := prim[k, m, n] = Module[{s = 0}, %t A265627 Do[Do[s = s + (k^(m*n/(d1*d2)))*MoebiusMu[d1]*MoebiusMu[d2], %t A265627 {d1, Divisors[m]}], {d2, Divisors[n]}]; s]; %t A265627 a[n_] := prim[2, n, n] %t A265627 Table[a[n], {n, 1, 12}] (* _Jean-François Alcover_, Jul 24 2022, after Maple code *) %Y A265627 Cf. A027375. %K A265627 nonn %O A265627 1,1 %A A265627 _Jeffrey Shallit_, Dec 10 2015