cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265628 Carmichael numbers (A002997) of the form k^3 + 1.

This page as a plain text file.
%I A265628 #38 Feb 16 2025 08:33:27
%S A265628 1729,46657,2628073,19683001,110592000001,432081216001,2116874304001,
%T A265628 3176523000001,312328165704192001,12062716067698821000001,
%U A265628 211215936967181638848001,411354705193473163968001,14295706553536348081491001,32490089562753934948660824001
%N A265628 Carmichael numbers (A002997) of the form k^3 + 1.
%C A265628 For the first nine Carmichael numbers of the form k^3 + 1, the values of k + 1 are 13, 37, 139, 271, 4801, 7561, 12841, 14701, 678481 and only 14701 is not a prime number.
%C A265628 The sequence also includes: 32490089562753934948660824001, 782293837499544845175052968001, 611009032634107957276386802479001. - _Daniel Suteu_, Dec 25 2020
%H A265628 G. Tarry, I. Franel, A. Korselt, and G. Vacca, <a href="https://oeis.org/wiki/File:Probl%C3%A8me_chinois.pdf">Problème chinois</a>, L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
%H A265628 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>.
%H A265628 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.
%e A265628 2628073 is a term because it is a Carmichael number and 2628073 = 138^3 + 1.
%o A265628 (PARI) is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
%o A265628 for(n=1, 1e10, if(is_c(k=n^3+1), print1(k, ", ")))
%o A265628 (PARI) lista(kmax) = {my(m); for(k = 2, kmax, f = factor(k); for(i = 1, #f~, f[i, 2] *= 3); m = k^3 + 1; fordiv(f, d, if(!(m % (d+1)) && isprime(d+1), m /= (d+1))); if(m == 1, print1(k^3 + 1, ", "))); } \\ _Amiram Eldar_, May 02 2024
%Y A265628 Cf. A002997, A265285, A265328.
%K A265628 nonn,hard,more
%O A265628 1,1
%A A265628 _Altug Alkan_, Dec 10 2015
%E A265628 More terms from _Alois P. Heinz_, Dec 10 2015
%E A265628 a(10)-a(13) from _Daniel Suteu_, Dec 25 2020
%E A265628 a(14) from _Daniel Suteu_ confirmed by _Amiram Eldar_, May 02 2024