This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265640 #71 Jan 30 2025 17:40:59 %S A265640 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,25,27,28,29,31,32,36,37, %T A265640 41,43,44,45,47,48,49,50,52,53,59,61,63,64,67,68,71,72,73,75,76,79,80, %U A265640 81,83,89,92,97,98,99,100,101,103,107,108,109,112,113,116,117,121,124,125,127,128,131,137,139,144 %N A265640 Prime factorization palindromes (see comments for definition). %C A265640 a(66) is the first term at which this sequence differs from A119848. %C A265640 A number N is called a prime factorization palindrome (PFP) if all its prime factors, taking into account their multiplicities, can be arranged in a row with central symmetry (see example). It is easy to see that every PFP-number is either a square or a product of a square and a prime. In particular, the sequence contains all primes. %C A265640 Numbers which are both palindromes (A002113) and PFP are 1,2,3,4,5,7,9,11,44,99,101,... (see A265641). %C A265640 If n is in the sequence, so is n^k for all k >= 0. - _Altug Alkan_, Dec 11 2015 %C A265640 The sequence contains all perfect numbers except 6 (cf. A000396). - _Don Reble_, Dec 12 2015 %C A265640 Equivalently, numbers that have at most one prime factor with odd multiplicity. - _Robert Israel_, Feb 03 2016 %C A265640 Numbers whose squarefree part is noncomposite. - _Peter Munn_, Jul 01 2020 %H A265640 Robert Israel, <a href="/A265640/b265640.txt">Table of n, a(n) for n = 1..10000</a> %F A265640 lim A(x)/pi(x) = zeta(2) where A(x) is the number of a(n) <= x and pi is A000720. %e A265640 44 is a member, since 44=2*11*2. %e A265640 52 is a member, since 52=2*13*2. [This illustrates the fact that the digits don't need to form a palindrome. This is not a base-dependent sequence. - _N. J. A. Sloane_, Oct 05 2024] %e A265640 180 is a member, since 180=2*3*5*3*2. %p A265640 N:= 1000: # to get all terms <= N %p A265640 P:= [1,op(select(isprime, [2,seq(i,i=3..N,2)]))]: %p A265640 sort([seq(seq(p*x^2,x=1..floor(sqrt(N/p))),p=P)]); # _Robert Israel_, Feb 03 2016 %t A265640 M = 200; P = Join[{1}, Select[Join[{2}, Range[3, M, 2]], PrimeQ]]; Sort[ Flatten[Table[Table[p x^2, {x, 1, Floor[Sqrt[M/p]]}], {p, P}]]] (* _Jean-François Alcover_, Apr 09 2019, after _Robert Israel_ *) %o A265640 (PARI) for(n=1, 200, if( ispseudoprime(core(n)) || issquare(n), print1(n, ", "))) \\ _Altug Alkan_, Dec 11 2015 %o A265640 (Python) %o A265640 from math import isqrt %o A265640 from sympy.ntheory.factor_ import core, isprime %o A265640 def ok(n): return isqrt(n)**2 == n or isprime(core(n)) %o A265640 print([k for k in range(1, 145) if ok(k)]) # _Michael S. Branicky_, Oct 03 2024 %o A265640 (Python) %o A265640 from math import isqrt %o A265640 from sympy import primepi, mobius %o A265640 def A265640(n): %o A265640 def bisection(f,kmin=0,kmax=1): %o A265640 while f(kmax) > kmax: kmax <<= 1 %o A265640 kmin = kmax >> 1 %o A265640 while kmax-kmin > 1: %o A265640 kmid = kmax+kmin>>1 %o A265640 if f(kmid) <= kmid: %o A265640 kmax = kmid %o A265640 else: %o A265640 kmin = kmid %o A265640 return kmax %o A265640 def f(x): %o A265640 c = n-(a:=isqrt(x)) %o A265640 for y in range(1,a+1): %o A265640 m = x//y**2 %o A265640 c -= primepi(m)-sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) %o A265640 return c %o A265640 return bisection(f,n,n) # _Chai Wah Wu_, Jan 30 2025 %Y A265640 Cf. A000396, A000720, A002113, A265641, complement of A229153. %Y A265640 Disjoint union of A229125 and (A000290\{0}). %Y A265640 Cf. A013661 (zeta(2)). %K A265640 nonn %O A265640 1,2 %A A265640 _Vladimir Shevelev_, Dec 11 2015