A265649 Triangle of coefficients T(n,k) of polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^k where T(0,0) = 1, and T(n,k) = 0 for k < 0 or k > n, and T(n,k) = T(n-1,k-1) + (2*n-1+k)*T(n-1,k) for n > 0 and 0 <= k <= n.
1, 1, 1, 3, 5, 1, 15, 33, 12, 1, 105, 279, 141, 22, 1, 945, 2895, 1830, 405, 35, 1, 10395, 35685, 26685, 7500, 930, 51, 1, 135135, 509985, 435960, 146685, 23310, 1848, 70, 1, 2027025, 8294895, 7921305, 3076290, 589575, 60270, 3318, 92, 1, 34459425, 151335135, 158799690, 69447105, 15457365, 1915515, 136584, 5526, 117, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k: 0 1 2 3 4 5 6 7 8 0: 1 1: 1 1 2: 3 5 1 3: 15 33 12 1 4: 105 279 141 22 1 5: 945 2895 1830 405 35 1 6: 10395 35685 26685 7500 930 51 1 7: 135135 509985 435960 146685 23310 1848 70 1 8: 2027025 8294895 7921305 3076290 589575 60270 3318 92 1 etc. The polynomial corresponding to row 3 is p(3,x) = 15 + 33*x + 12*x^2 + x^3.
Links
- Paul Barry, A Note on d-Hankel Transforms, Continued Fractions, and Riordan Arrays, arXiv:1702.04011 [math.CO], 2017.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See pp. 21, 28.
Programs
-
Maple
T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer((j+1)/2, n), j=0..k) / k!: for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Mar 04 2024
-
Mathematica
(* The function RiordanArray is defined in A256893. *) rows = 10; R = RiordanArray[1/Sqrt[1 - 2 #]&, 1/Sqrt[1 - 2 #] - 1&, rows, True]; R // Flatten (* Jean-François Alcover, Jul 20 2019 *)
Formula
Recurrence: p(0,x) = 1 and p(n+1,x) = (2*n+1+x)*p(n,x) + x*p'(n,x).
T(n,0) = A001147(n), T(n+1,1) = A129890(n), T(n+1,n) = A000326(n+1), and Sum_{k=0..n} (-1)^k*k!*T(n,k) = A000007(n).
Recurrence: k^2*(k+1)*T(n,k+1) = (2*n+2-2*k)*T(n,k-1)-k*(3*k-1)*T(n,k).
Conjecture: T(n,k) = 2^(n-k)*(n-k)!*binomial(n,k)*(Sum_{j=0..n-k} (-1/4)^j* binomial(2*j+k,j)*binomial(n,j+k)).
T(n,k) = (Sum_{i=0..k} (-1)^(k-i) * binomial(k, i)*Product_{j=1..n} (2*j+i-1))/k!. - Werner Schulte, Mar 03 2024
T(n,k) = (2^n/k!)*(Sum_{j=0..k}(-1)^(k-j)*binomial(k,j)*Pochhammer((j + 1)/2, n)). - Peter Luschny, Mar 04 2024
Comments