cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265649 Triangle of coefficients T(n,k) of polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^k where T(0,0) = 1, and T(n,k) = 0 for k < 0 or k > n, and T(n,k) = T(n-1,k-1) + (2*n-1+k)*T(n-1,k) for n > 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 5, 1, 15, 33, 12, 1, 105, 279, 141, 22, 1, 945, 2895, 1830, 405, 35, 1, 10395, 35685, 26685, 7500, 930, 51, 1, 135135, 509985, 435960, 146685, 23310, 1848, 70, 1, 2027025, 8294895, 7921305, 3076290, 589575, 60270, 3318, 92, 1, 34459425, 151335135, 158799690, 69447105, 15457365, 1915515, 136584, 5526, 117, 1
Offset: 0

Views

Author

Werner Schulte, Dec 11 2015

Keywords

Comments

The polynomials p(n,x) satisfy the differential equation: x*y''' + (3*x+1)*y'' + (2*x+2)*y' - 2*n*y = 0 where y' = dy/dx (first derivative).
Appears to be the exponential Riordan array [1/sqrt(1 - 2x), 1/(sqrt(1 - 2x) - 1)]. [Barry, Example 1] - Eric M. Schmidt, Sep 23 2017

Examples

			The triangle T(n,k) begins:
n\k:        0        1        2        3       4      5     6   7  8
  0:        1
  1:        1        1
  2:        3        5        1
  3:       15       33       12        1
  4:      105      279      141       22       1
  5:      945     2895     1830      405      35      1
  6:    10395    35685    26685     7500     930     51     1
  7:   135135   509985   435960   146685   23310   1848    70   1
  8:  2027025  8294895  7921305  3076290  589575  60270  3318  92  1
  etc.
The polynomial corresponding to row 3 is p(3,x) = 15 + 33*x + 12*x^2 + x^3.
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer((j+1)/2, n), j=0..k) / k!: for n from 0 to 6 do seq(T(n, k), k=0..n) od;  # Peter Luschny, Mar 04 2024
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 10;
    R = RiordanArray[1/Sqrt[1 - 2 #]&, 1/Sqrt[1 - 2 #] - 1&, rows, True];
    R // Flatten (* Jean-François Alcover, Jul 20 2019 *)

Formula

Recurrence: p(0,x) = 1 and p(n+1,x) = (2*n+1+x)*p(n,x) + x*p'(n,x).
T(n,0) = A001147(n), T(n+1,1) = A129890(n), T(n+1,n) = A000326(n+1), and Sum_{k=0..n} (-1)^k*k!*T(n,k) = A000007(n).
Recurrence: k^2*(k+1)*T(n,k+1) = (2*n+2-2*k)*T(n,k-1)-k*(3*k-1)*T(n,k).
Conjecture: T(n,k) = 2^(n-k)*(n-k)!*binomial(n,k)*(Sum_{j=0..n-k} (-1/4)^j* binomial(2*j+k,j)*binomial(n,j+k)).
Conjecture: T(n,k) = (-1)^k*Sum_{j=0..n-1} A001497(n-1,j)*A021009(j+1,k).
T(n,k) = (Sum_{i=0..k} (-1)^(k-i) * binomial(k, i)*Product_{j=1..n} (2*j+i-1))/k!. - Werner Schulte, Mar 03 2024
T(n,k) = (2^n/k!)*(Sum_{j=0..k}(-1)^(k-j)*binomial(k,j)*Pochhammer((j + 1)/2, n)). - Peter Luschny, Mar 04 2024