cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265676 a(n) is the total number of petals of the Flower of Life at the n-th iteration.

This page as a plain text file.
%I A265676 #16 Aug 26 2024 19:40:08
%S A265676 0,1,7,19,43,67,97,139,181,229,289,349,415,493,571,655,751,847,949,
%T A265676 1063,1177,1297,1429,1561,1699,1849,1999,2155,2323,2491,2665,2851,
%U A265676 3037,3229,3433,3637,3847,4069,4291,4519,4759,4999,5245,5503,5761,6025,6301,6577
%N A265676 a(n) is the total number of petals of the Flower of Life at the n-th iteration.
%C A265676 Inspired by A264788, but counting on petals of the Flower of Life instead of circles. For n >= 3, the second differences seem to be cyclic of 6, 12, 0.
%H A265676 Colin Barker, <a href="/A265676/b265676.txt">Table of n, a(n) for n = 0..1000</a>
%H A265676 Crystalinks, <a href="http://www.crystalinks.com/floweroflife.html">Flower of Life</a>
%H A265676 Kival Ngaokrajang, <a href="/A265676/a265676.pdf">Illustration of initial terms</a>, <a href="/A265676/a265676_1.pdf">For n = 11</a>
%H A265676 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).
%F A265676 From _Colin Barker_, Dec 13 2015: (Start)
%F A265676 a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5.
%F A265676 G.f.: x*(1+5*x+6*x^2+11*x^3-5*x^4) / ((1-x)^3*(1+x+x^2)).
%F A265676 (End)
%t A265676 CoefficientList[Series[x (1 + 5 x + 6 x^2 + 11 x^3 - 5 x^4)/((1 - x)^3 (1 + x + x^2)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Dec 14 2015 *)
%t A265676 LinearRecurrence[{2,-1,1,-2,1},{0,1,7,19,43,67},50] (* _Harvey P. Dale_, Aug 26 2024 *)
%o A265676 (PARI) { a = 7; d1 = 6; print1("0, 1, ", a, ", "); for(n = 3, 100, if (Mod(n,3) == 0, d2 = 6); if (Mod(n,3) == 1, d2 = 12); if (Mod(n,3) == 2, d2 = 0); d1 = d1 + d2; a = a + d1; print1(a, ", "))}
%o A265676 (PARI) concat(0, Vec(x*(1+5*x+6*x^2+11*x^3-5*x^4) / ((1-x)^3*(1+x+x^2)) + O(x^100))) \\ _Colin Barker_, Dec 13 2015
%o A265676 (Magma) I:=[0,1,7,19,43,67]; [n le 6 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-3)-2*Self(n-4)+Self(n-5): n in [1..60]]; // _Vincenzo Librandi_, Dec 14 2015
%Y A265676 Cf. A264788.
%K A265676 nonn,easy
%O A265676 0,3
%A A265676 _Kival Ngaokrajang_, Dec 13 2015