This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265707 #13 Dec 15 2015 10:06:51 %S A265707 1,1,3,1,5,7,1,9,19,15,1,17,49,65,31,1,33,127,225,211,63,1,65,337,749, %T A265707 961,665,127,1,129,919,2505,3991,3969,2059,255,1,257,2569,8525,16201, %U A265707 20237,16129,6305,511,1,513,7327,29625,65911,97713 %N A265707 Rectangular array A read by upward antidiagonals: A(n,m) is the number of surjective difunctional (regular) binary relations between an n-element set and an m-element set. %C A265707 A(n,m) is the number of surjective difunctional (regular) binary relations between an n-element set and an m-element set. %H A265707 Jasha Gurevich, <a href="/A265707/b265707.txt">Table of n, a(n) for n = 1..300</a> %H A265707 Chris Brink, Wolfram Kahl, Gunther Schmidt, <a href="http://dx.doi.org/10.1007/978-3-7091-6510-2">Relational Methods in Computer Science</a>, Springer Science & Business Media, 1997, p. 200. %H A265707 J. Riguet, <a href="http://www.numdam.org/item?id=BSMF_1948__76__114_0">Relations binaires, fermetures, correspondances de Galois</a>, Bulletin de la Société Mathématique de France (1948) Volume: 76, pp. 114-155. %H A265707 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_relation#Difunctional">Binary relation</a> %F A265707 T(n, m) = Sum_{i=1..n} (Stirling2(m, i-1)* i! + Stirling2(m, i)* i! ) * Stirling2(n, i). %e A265707 Array A begins %e A265707 1 1 1 1 1 1 1 1 1 %e A265707 3 5 9 17 33 65 129 257 513 %e A265707 7 19 49 127 337 919 2569 7327 21217 %e A265707 15 65 225 749 2505 8525 29625 105149 380745 %e A265707 31 211 961 3991 16201 65911 271561 1137991 4857001 %e A265707 63 665 3969 20237 97713 464645 2214009 10657997 52034913 %e A265707 127 2059 16129 100087 568177 3115519 16911049 91989367 504717697 %e A265707 255 6305 65025 489149 3242265 20322605 124422105 756570029 4611314745 %e A265707 511 19171 261121 2379511 18341401 130656871 896158921 6046077511 40608430681 %p A265707 sum((Stirling2(m, i-1)*factorial(i)+Stirling2(m,i)*factorial(i))*Stirling2(n, i), i = 1 .. n); %o A265707 (PARI) T(n, m) = sum(i=1, n, (stirling(m, i-1, 2)*i! + stirling(m, i, 2)*i!)*stirling(n, i, 2)); %Y A265707 Cf. A265417, A265706. %K A265707 nonn,tabl %O A265707 1,3 %A A265707 _Jasha Gurevich_, Dec 14 2015