This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265719 #11 Sep 08 2022 08:46:15 %S A265719 1,2,4,6,12,24,30,48,60,120,180,210,240,360,420,720,840,1260,1680, %T A265719 2520,4620,5040,7560,9240,13860,18480,27720,55440,83160,110880,120120, %U A265719 166320,180180,240240,360360,720720,1081080,1441440,1801800,2042040,2162160,3063060,3603600,4084080 %N A265719 Numbers n such that Sum_{d|n} 1/tau(d) > Sum_{d|m} 1/tau(d) for all m < n. %C A265719 Where record values of Sum_{d|n} 1/tau(d) occur. %C A265719 Terms a(n) are the smallest number from sequences numbers with following prime signatures: {}, {1}, {2}, {1, 1}, {2, 1}, {3, 1}, {1, 1, 1}, {4, 1}, {2, 1, 1}, {3, 1, 1}, {2, 2, 1}, {1, 1, 1, 1}, {4, 1, 1}, {3, 2, 1}, ... %e A265719 For n = 4; a(4) = 6 because 6 is the smallest number such that Sum_{d|a(4)} 1/tau(d) = Sum_{d|6} 1/tau(d) = 9/4 > Sum_{d|a(3)} 1/tau(d) = Sum_{d|4} 1/tau(d) = 11/6. %o A265719 (Magma) a:=1; S:=[a]; for n in [2..25] do k:=0; flag:= true; while flag do k+:=1; if &+[1/NumberOfDivisors(d): d in Divisors(a)] lt &+[1/NumberOfDivisors(d): d in Divisors(k)] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S; %o A265719 (PARI) lista(nn) = {m = 0; for (n=1, nn, if ((mm = sumdiv(n, d, 1/numdiv(d))) > m, print1(n, ", "); m = mm););} \\ _Michel Marcus_, Dec 22 2015 %Y A265719 Cf. A000005, A237350, A253139, A265390, A265391, A265392, A265393. %K A265719 nonn %O A265719 1,2 %A A265719 _Jaroslav Krizek_, Dec 14 2015 %E A265719 More terms from _Michel Marcus_, Dec 22 2015