cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265720 Binary representation of the n-th iteration of the "Rule 1" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 0, 100, 1100011, 10000, 11110001111, 1000000, 111111000111111, 100000000, 1111111100011111111, 10000000000, 11111111110001111111111, 1000000000000, 111111111111000111111111111, 100000000000000, 1111111111111100011111111111111, 10000000000000000
Offset: 0

Views

Author

Robert Price, Dec 14 2015

Keywords

Comments

Rule 33 also generates this sequence.

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 10 rows, replacing leading zeros with ".", the row converted to its binary equivalent at right:
                  1                    =                   1
                . . 0                  =                   0
              . . 1 0 0                =                 100
            1 1 0 0 0 1 1              =             1100011
          . . . . 1 0 0 0 0            =               10000
        1 1 1 1 0 0 0 1 1 1 1          =         11110001111
      . . . . . . 1 0 0 0 0 0 0        =             1000000
    1 1 1 1 1 1 0 0 0 1 1 1 1 1 1      =     111111000111111
  . . . . . . . . 1 0 0 0 0 0 0 0 0    =           100000000
1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1  = 1111111100011111111
(End)
		

Crossrefs

Programs

  • Mathematica
    rule = 1; rows = 20; Table[FromDigits[Table[Take[CellularAutomaton[rule, {{1}, 0}, rows - 1, {All, All}][[k]], {rows - k + 1, rows + k - 1}], {k, 1, rows}][[k]]], {k, 1, rows}]
  • Python
    print([(10*100**n - 999*10**(n-1) - 1)//9 if n%2 else 10**n for n in range(50)]) # Karl V. Keller, Jr., Aug 25 2021

Formula

From Colin Barker, Dec 14 2015 and Apr 16 2019: (Start)
a(n) = 10101*a(n-2) - 1010100*a(n-4) + 1000000*a(n-6) for n > 5.
G.f.: (1-10001*x^2+1100011*x^3+10000*x^4-1210000*x^5) / ((1-x)*(1+x)*(1-10*x)*(1+10*x)*(1-100*x)*(1+100*x)).
(End)
a(n) = (10*100^n - 999*10^(n-1) - 1)/9 for odd n; a(n) = 10^n for even n. - Karl V. Keller, Jr., Aug 25 2021