This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265721 #31 Feb 16 2025 08:33:28 %S A265721 1,0,4,99,16,1935,64,32319,256,522495,1024,8381439,4096,134189055, %T A265721 16384,2147368959,65536,34359279615,262144,549753978879,1048576, %U A265721 8796085682175,4194304,140737458995199,16777216,2251799696244735,67108864,36028796549201919,268435456 %N A265721 Decimal representation of the n-th iteration of the "Rule 1" elementary cellular automaton starting with a single ON (black) cell. %C A265721 Rule 33 also generates this sequence. %D A265721 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55. %H A265721 Robert Price, <a href="/A265721/b265721.txt">Table of n, a(n) for n = 0..999</a> %H A265721 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A265721 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A265721 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %H A265721 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,21,0,-84,0,64). %F A265721 From _Colin Barker_, Dec 14 2015 and Apr 16 2019: (Start) %F A265721 a(n) = 21*a(n-2) - 84*a(n-4) + 64*a(n-6) for n>5. %F A265721 G.f.: (1-17*x^2+99*x^3+16*x^4-144*x^5) / ((1-x)*(1+x)*(1-2*x)*(1+2*x)*(1-4*x)*(1+4*x)). %F A265721 (End) %F A265721 a(n) = 2*4^n - 7*2^(n-1) - 1 for odd n; a(n) = 2^n for even n. - _Karl V. Keller, Jr._, Aug 24 2021 %e A265721 From _Michael De Vlieger_, Dec 14 2015: (Start) %e A265721 First 8 rows, replacing leading zeros with ".", the row converted to its binary (A265720), then decimal equivalent at right: %e A265721 1 -> 1 = 1 %e A265721 . . 0 -> 0 = 0 %e A265721 . . 1 0 0 -> 100 = 4 %e A265721 1 1 0 0 0 1 1 -> 1100011 = 99 %e A265721 . . . . 1 0 0 0 0 -> 10000 = 16 %e A265721 1 1 1 1 0 0 0 1 1 1 1 -> 11110001111 = 1935 %e A265721 . . . . . . 1 0 0 0 0 0 0 -> 1000000 = 64 %e A265721 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 -> 111111000111111 = 32319 %e A265721 (End) %t A265721 rule = 1; rows = 30; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]],2], {k,1,rows}] %o A265721 (Python) print([2*4**n - 7*2**(n-1) - 1 if n%2 else 2**n for n in range(50)]) # _Karl V. Keller, Jr._, Aug 24 2021 %Y A265721 Cf. A265718, A265720, A059841, A056830, A000975, A265722, A128918, A265723, A265724. %K A265721 nonn,easy %O A265721 0,3 %A A265721 _Robert Price_, Dec 14 2015