A265728 Least primitive weird number, pwn, (A002975) whose abundance is divisible by the n-th prime (A000040), or 0 if no such pwn exists.
70, 232374697216, 73616, 9272, 243892, 343876, 4128448, 519712, 1901728, 338572, 5568448, 6621632, 272240768, 4960448, 7470272, 1673087984, 146279296, 5440192, 91322752, 8134208, 35442304, 286717696, 54962343424, 110232704, 6460864, 2812606976, 44473216, 141659096, 33736064, 58668928, 9537494528, 37499776, 292335872, 795730688, 530110208, 18657360896, 16995175424, 664373504, 266311424, 23049995264, 15152370176, 17124699136, 64015565312, 52059008
Offset: 1
Keywords
Examples
a(1) = 70 since it is the least pwn whose abundance, 4, is divisible by the first prime, 2. a(2) = 0 since there is no known odd pwn and if there were, there is no reason why the abundance would be == 0 (mod 3). a(3) = 73616 since it is the first pwn whose abundance, 80, is divisible by the third prime, 5.
Links
- Douglas E. Iannucci, On primitive weird numbers of the form 2^k*p*q, arXiv:1504.02761 [math.NT], 2015.
- Linked In, Number Theory, A very big weird number
- Giuseppe Melfi, On the conditional infiniteness of primitive weird numbers, Journal of Number Theory, Vol. 147, Feb 2015, pp. 508-514.
- Wikipedia, Weird number
Crossrefs
Programs
-
Mathematica
(* copy the terms from A002975, assign them equal to 'lst' and then *) f[n_] := Select[lst, Mod[ DivisorSigma[1, #] - 2#, Prime@ n] == 0 &][[1]]; Array[f, 30]
Comments