cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265729 Decimal expansion of 32*Pi.

This page as a plain text file.
%I A265729 #21 Mar 05 2025 06:34:59
%S A265729 1,0,0,5,3,0,9,6,4,9,1,4,8,7,3,3,8,3,6,3,0,8,0,4,5,8,8,2,6,4,9,4,4,0,
%T A265729 9,2,2,9,4,3,0,9,4,2,0,7,8,0,0,0,3,3,8,6,2,7,1,1,9,8,2,2,6,9,5,3,8,5,
%U A265729 0,1,2,5,0,0,1,1,5,8,6,8,7,9,5,6,0,9,7,1,1,4,4,1,0,9,4,7,7,4,6,1,7,5,4,2,8
%N A265729 Decimal expansion of 32*Pi.
%C A265729 "The integral corresponds to integration over a spherical cone with opening angle Pi/2 and radius 4. However, it is not clear what the integrand physically represents (it resembles computation of a moment of inertia, but that would give a factor (rho*sin(phi))^2 rather than the given rho*cos(phi))."
%D A265729 The Jun 02 1996 comic strip FoxTrot by Bill Amend (Amend 1998, p. 19; Mitchell 2006/2007)
%H A265729 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DefiniteIntegral.html">Definite Integral</a>
%H A265729 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A265729 Equals Integral_{theta=0..2*Pi} Integral_{phi=0..Pi/4} Integral_{rho=0..4} (rho*cos(phi))*rho^2*sin(phi) d(rho) d(phi) d(theta).
%e A265729 100.53096491487338363080458826494409229430942078000338627119822695385012500...
%t A265729 RealDigits[32 Pi, 10, 111][[1]] (* or *)
%t A265729 Integrate[\[Rho] Cos[\[Phi]] \[Rho]^2 Sin[\[Phi]], {\[Rho], 0, 4}, {\[Phi], 0, Pi/4}, {\[Theta], 0, 2 Pi}]
%o A265729 (PARI) 32*Pi \\ _Altug Alkan_, Dec 14 2015
%Y A265729 Cf. A000796, A019692, A122952, A019694, A019669, A228719, A228721, A228824, A229939, A061146.
%K A265729 cons,nonn,easy
%O A265729 3,4
%A A265729 _Eric W. Weisstein_ and _Robert G. Wilson v_, Dec 14 2015