cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265730 Zeroless numbers n such that the decimal expansion of a/b contains each digit of n, for all a,b > 0 such that concatenate(a,b) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16, 17, 27, 47, 52, 57, 78, 87, 117, 131, 151, 157, 158, 161, 171, 177, 187, 191, 247, 257, 277, 417, 447, 457, 487, 517, 547, 557, 558, 587, 592, 717, 747, 757, 787, 817, 857, 887, 1131, 1147, 1151, 1157, 1161, 1167, 1171, 1177, 1181, 1191, 1221, 1247, 1251, 1257, 1261, 1287, 1331, 1361, 1371, 1417
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Dec 14 2015

Keywords

Comments

Termed "1951 numbers" by Eric Angelini, cf. LINKS.

Examples

			The single-digit numbers 1,...,9 are in the sequence because there is no possible decomposition a,b.
The number 1951 is in the sequence because 195/1 = 195.0, 19/51 = 0.3725490196... and 1/951 = 0.0010515247108307045215562565720294... all have each of the digits '1', '5' and '9' the number 1951 is made of.
		

Crossrefs

Cf. A051626.

Programs

  • Mathematica
    fQ[n_] := Block[{d = IntegerDigits@ n, w}, w = Map[Union@ Flatten@ # &, First /@ RealDigits@ Map[FromDigits@ Take[d, #]/FromDigits@ Take[d, -Length@ d + #] &, Reverse@ Range[Length@ d - 1]], {1}]; And @@ Function[k, AllTrue[d, MemberQ[k, #] &]] /@ w]; Select[Select[Range@ 1500, Last@ DigitCount@ # == 0 &], fQ] (* Michael De Vlieger, Dec 14 2015 *)
  • PARI
    is(n,d=Set(digits(n)),p=n+#Str(n))={vecmin(d)&&!for(i=10,n,setminus(d,Set(digits(n\i*10^p\(n%i))))&&return;i=i*10-1)}