This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265734 #33 Jul 09 2025 04:40:40 %S A265734 0,1,2,3,4,6,5,8,7,10,12,9,14,11,16,18,13,20,15,22,24,17,26,19,28,30, %T A265734 21,32,23,34,36,25,38,27,40,42,29,44,31,46,48,33,50,35,52,54,37,56,39, %U A265734 58,60,41,62,43,64,66,45,68,47,70,72,49,74,51,76,78,53,80 %N A265734 Permutation of nonnegative integers: a(n) = n + floor(n/5)*(-1)^(n mod 5). %H A265734 Bruno Berselli, <a href="/A265734/b265734.txt">Table of n, a(n) for n = 0..1000</a> %H A265734 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,2,0,0,0,0,-1). %H A265734 <a href="/index/Per#IntegerPermutation">Index entries for permutations of the positive (or nonnegative) integers</a>. %F A265734 G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 3*x^5 + 4*x^6 + x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2). %F A265734 a(n) = 2*a(n-5) - a(n-10). %F A265734 a(5*k+r) = (5+(-1)^r)*k + r, where r=0..4. %F A265734 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*(1/(2*sqrt(2))-1/(3*sqrt(3))) + log(2)/6. - _Amiram Eldar_, Mar 30 2023 %e A265734 ------------------------------------------------------------------------ %e A265734 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ... %e A265734 + + + + + + + + + + + + + + + + + + + %e A265734 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, 2, -2, 2, -2, 2, 3, -3, 3, -3, ... %e A265734 ------------------------------------------------------------------------ %e A265734 0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 12, 9, 14, 11, 16, 18, 13, 20, 15, ... %e A265734 ------------------------------------------------------------------------ %t A265734 Table[n + Floor[n/5] (-1)^Mod[n, 5], {n, 0, 80}] %o A265734 (Sage) [n+floor(n/5)*(-1)^mod(n, 5) for n in (0..80)] %o A265734 (Magma) [n+Floor(n/5)*(-1)^(n mod 5): n in [0..80]]; %Y A265734 Cf. A001477. %Y A265734 Cf. A064455: n+floor(n/2)*(-1)^(n mod 2). %Y A265734 Cf. A265667: n+floor(n/3)*(-1)^(n mod 3). %Y A265734 Cf. A265888: n+floor(n/4)*(-1)^(n mod 4) %K A265734 nonn,easy %O A265734 0,3 %A A265734 _Bruno Berselli_, Dec 15 2015 - based on an idea by _Paul Curtz_