This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265759 #19 Dec 29 2015 04:20:16 %S A265759 3,2,5,13,11,19,17,31,29,43,41,61,59,73,71,103,101,109,107,139,137, %T A265759 151,149,181,179,193,191,199,197,229,227,241,239,271,269,283,281,313, %U A265759 311,349,347,421,419,433,431,463,461,523,521,571,569,601,599,619,617 %N A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments. %C A265759 Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). %C A265759 See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA. %C A265759 x Lower POBA Upper POBA POBA %C A265759 1 A001359/A006512 A006512/A001359 A265759/A265760 %C A265759 3/2 A104163/A158708 A162336/A158709 A265761/A222565 %C A265759 2 A005383/A005382 A005385/A005384 A079149/A120628 %C A265759 3 A091180/A088878 A094525/A023208 A265763/A265764 %C A265759 4 A162857/A062737 A090866/A023212 A265765/A120639 %C A265759 5 A265766/A158318 A265767/A023217 A265768/A265769 %C A265759 6 A227756/A158015 A051644/A007693 A265770/A265771 %C A265759 sqrt(2) A265772/A265773 A265774/A265775 A265776/A265777 %C A265759 sqrt(3) A265778/A265779 A265780/A265781 A265782/A265783 %C A265759 sqrt(5) A265784/A265785 A265786/A265787 A265788/A265789 %C A265759 sqrt(8) A265790/A265791 A265792/A265793 A265794/A265795 %C A265759 tau A265796/A265797 A265798/A265799 A265800/A265801 %C A265759 1/tau A265799/A265798 A265797/A265796 A265806/A265807 %C A265759 pi A265808/A265809 A265810/A265811 A265812/A265813 %C A265759 e A265814/A265815 A265816/A265817 A265818/A265819 %e A265759 The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is. %t A265759 x = 1; z = 200; p[k_] := p[k] = Prime[k]; %t A265759 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265759 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265759 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265759 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265759 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265759 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265759 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *) %t A265759 Numerator[tL] (* A001359 *) %t A265759 Denominator[tL] (* A006512 *) %t A265759 Numerator[tU] (* A006512 *) %t A265759 Denominator[tU] (* A001359 *) %t A265759 Numerator[y] (* A265759 *) %t A265759 Denominator[y] (* A265760 *) %Y A265759 Cf. A000040, A001359, A006512, A265759, A265760. %K A265759 nonn,frac %O A265759 1,1 %A A265759 _Clark Kimberling_, Dec 15 2015