A265763 Numerators of primes-only best approximates (POBAs) to 3; see Comments.
7, 5, 17, 13, 23, 19, 31, 41, 37, 53, 59, 71, 67, 89, 113, 109, 131, 127, 139, 157, 179, 181, 199, 211, 239, 251, 269, 293, 311, 307, 337, 383, 379, 409, 419, 449, 491, 487, 503, 499, 521, 541, 571, 577, 593, 599, 631, 683, 701, 719, 751, 773, 769, 787, 809
Offset: 1
Examples
The POBAs for 3 start with 7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
Programs
-
Mathematica
x = 3; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *) Numerator[tL] (* A091180 *) Denominator[tL] (* A088878 *) Numerator[tU] (* A094525 *) Denominator[tU] (* A023208 *) Numerator[y] (* A265763 *) Denominator[y] (* A265764 *)
Comments