A265764 Denominators of primes-only best approximates (POBAs) to 3; see Comments.
2, 2, 5, 5, 7, 7, 11, 13, 13, 17, 19, 23, 23, 29, 37, 37, 43, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 103, 103, 113, 127, 127, 137, 139, 149, 163, 163, 167, 167, 173, 181, 191, 193, 197, 199, 211, 227, 233, 239, 251, 257, 257, 263, 269, 271, 277, 293
Offset: 1
Examples
The POBAs for 3 start with 7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
Programs
-
Mathematica
x = 3; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *) Numerator[tL] (* A091180 *) Denominator[tL] (* A088878 *) Numerator[tU] (* A094525 *) Denominator[tU] (* A023208 *) Numerator[y] (* A265763 *) Denominator[y] (* A265764 *)
Comments