A265765 Numerators of primes-only best approximates (POBAs) to 4; see Comments.
11, 7, 13, 11, 19, 29, 43, 53, 67, 149, 163, 173, 211, 269, 283, 293, 317, 331, 389, 509, 523, 547, 557, 653, 691, 773, 787, 797, 907, 1051, 1109, 1123, 1171, 1229, 1493, 1531, 1637, 1723, 1733, 1867, 1949, 1997, 2011, 2083, 2251, 2309, 2347, 2371, 2467
Offset: 1
Examples
The POBAs for 4 start with 11/2, 7/2, 13/3, 11/3, 19/5, 29/7, 43/11, 53/13, 67/17. For example, if p and q are primes and q > 13, then 53/13 is closer to 3 than p/q is.
Programs
-
Mathematica
x = 4; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265765/A120639 *) Numerator[tL] (* A162857 *) Denominator[tL] (* A062737 *) Numerator[tU] (* A090866 *) Denominator[tU] (* A023212 *) Numerator[y] (* A265765 *) Denominator[y] (* A120639 *)
Comments