A265766 Numerators of lower primes-only best approximates (POBAs) to 5; see Comments.
7, 13, 23, 53, 83, 113, 233, 263, 293, 353, 443, 503, 563, 653, 683, 743, 863, 953, 983, 1163, 1193, 1283, 1553, 1583, 1733, 1913, 2003, 2153, 2213, 2243, 2333, 2393, 2543, 2843, 2963, 3083, 3203, 3413, 3593, 3803, 3863, 4133, 4283, 4643, 4703, 4733, 5153
Offset: 1
Examples
The lower POBAs to 5 start with 7/2, 13/3, 23/5, 53/11, 83/17, 113/23, 233/47. For example, if p and q are primes and q > 17, and p/q < 5, then 83/17 is closer to 5 than p/q is.
Programs
-
Mathematica
x = 5; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *) Numerator[tL] (* A265766 *) Denominator[tL] (* A158318 *) Numerator[tU] (* A265767 *) Denominator[tU] (* A023217 *) Numerator[y] (* A222568 *) Denominator[y] (* A265769 *)
Comments