cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265766 Numerators of lower primes-only best approximates (POBAs) to 5; see Comments.

Original entry on oeis.org

7, 13, 23, 53, 83, 113, 233, 263, 293, 353, 443, 503, 563, 653, 683, 743, 863, 953, 983, 1163, 1193, 1283, 1553, 1583, 1733, 1913, 2003, 2153, 2213, 2243, 2333, 2393, 2543, 2843, 2963, 3083, 3203, 3413, 3593, 3803, 3863, 4133, 4283, 4643, 4703, 4733, 5153
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to 5 start with 7/2, 13/3, 23/5, 53/11, 83/17, 113/23, 233/47. For example, if p and q are primes and q > 17, and p/q < 5, then 83/17 is closer to 5 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 5; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *)
    Numerator[tL]   (* A265766 *)
    Denominator[tL] (* A158318 *)
    Numerator[tU]   (* A265767 *)
    Denominator[tU] (* A023217 *)
    Numerator[y]    (* A222568 *)
    Denominator[y]  (* A265769 *)