A265768 Numerators of primes-only best approximates (POBAs) to 5; see Comments.
7, 11, 23, 37, 53, 67, 83, 97, 113, 157, 233, 263, 293, 307, 337, 353, 367, 397, 443, 487, 503, 547, 563, 653, 683, 743, 757, 787, 863, 907, 953, 967, 983, 997, 1117, 1163, 1193, 1283, 1553, 1567, 1583, 1657, 1733, 1747, 1867, 1913, 1987, 2003, 2153, 2213
Offset: 1
Examples
The POBAs to 5 start with 7/2, 11/2, 23/5, 37/7, 53/11, 67/13, 83/17, 97/19, 113/23, 157/31, 233/47. For example, if p and q are primes and q > 13, then 67/13 is closer to 5 than p/q is.
Programs
-
Mathematica
x = 5; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *) Numerator[tL] (* A265766 *) Denominator[tL] (* A158318 *) Numerator[tU] (* A265767 *) Denominator[tU] (* A023217 *) Numerator[y] (* A222568 *) Denominator[y] (* A265769 *)
Comments