A265770 Numerators of primes-only best approximates (POBAs) to 6; see Comments.
13, 11, 19, 17, 31, 29, 43, 41, 67, 79, 103, 101, 113, 139, 137, 173, 223, 257, 283, 281, 317, 353, 367, 401, 439, 499, 607, 619, 617, 643, 641, 653, 677, 761, 787, 823, 821, 907, 941, 977, 1039, 1087, 1181, 1193, 1361, 1373, 1399, 1433, 1447, 1543, 1579
Offset: 1
Examples
The POBAs to 6 start with 13/2, 11/2, 19/3, 17/3, 31/5, 29/5, 43/7, 41/7, 67/11, 79/13, 103/17, 101/17. For example, if p and q are primes and q > 17, then 103/17 (and 101/17) is closer to 6 than p/q is.
Programs
-
Mathematica
x = 6; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265770/A265771 *) Numerator[tL] (* A227756 *) Denominator[tL] (* A158015 *) Numerator[tU] (* A051644 *) Denominator[tU] (* A007693 *) Numerator[y] (* A222570 *) Denominator[y] (* A265771 *)
Comments