This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265771 #13 May 13 2017 15:42:32 %S A265771 2,2,3,3,5,5,7,7,11,13,17,17,19,23,23,29,37,43,47,47,53,59,61,67,73, %T A265771 83,101,103,103,107,107,109,113,127,131,137,137,151,157,163,173,181, %U A265771 197,199,227,229,233,239,241,257,263,269,271,277,283,283,293,311 %N A265771 Denominators of primes-only best approximates (POBAs) to 6; see Comments. %C A265771 Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. %e A265771 The POBAs to 6 start with 13/2, 11/2, 19/3, 17/3, 31/5, 29/5, 43/7, 41/7, 67/11, 79/13, 103/17, 101/17. For example, if p and q are primes and q > 17, then 103/17 (and 101/17) is closer to 6 than p/q is. %t A265771 x = 6; z = 200; p[k_] := p[k] = Prime[k]; %t A265771 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265771 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265771 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265771 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265771 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265771 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265771 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265770/A265771 *) %t A265771 Numerator[tL] (* A227756 *) %t A265771 Denominator[tL] (* A158015 *) %t A265771 Numerator[tU] (* A051644 *) %t A265771 Denominator[tU] (* A007693 *) %t A265771 Numerator[y] (* A222570 *) %t A265771 Denominator[y] (* A265771 *) %Y A265771 Cf. A000040, A265759, A227756, A158015, A051644, A007693, A265770. %K A265771 nonn,frac %O A265771 1,1 %A A265771 _Clark Kimberling_, Dec 20 2015