A265772 Numerators of lower primes-only best approximates (POBAs) to sqrt(2); see Comments.
2, 7, 41, 977, 1093, 1373, 1721, 2281, 3121, 3319, 3947, 4903, 4937, 8597, 38287, 64037, 78643
Offset: 1
Examples
The lower POBAs to sqrt(2) start with 2/2, 7/5, 41/29, 977/691, 1093/773, 1373/971. For example, if p and q are primes and q > 691, and p/q < sqrt(2), then 977/691 is closer to sqrt(2) than p/q is.
Programs
-
Mathematica
x = Sqrt[2]; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265776/A265777 *) Numerator[tL] (* A265772 *) Denominator[tL] (* A265773 *) Numerator[tU] (* A265774 *) Denominator[tU] (* A265775 *) Numerator[y] (* A265776 *) Denominator[y] (* A265777 *)
Extensions
a(15)-a(17) from Robert Price, Apr 05 2019
Comments