This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265779 #16 Apr 05 2019 17:35:05 %S A265779 2,3,11,41,347,1153,1489,2131,43609,96731,101411 %N A265779 Denominators of lower primes-only best approximates (POBAs) to sqrt(3); see Comments. %C A265779 Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p. %C A265779 Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x. %C A265779 For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. %e A265779 The lower POBAs to sqrt(3) start with 3/2, 5/3, 19/11, 71/41, 601/347. For example, if p and q are primes and q > 347, and p/q < sqrt(3), then 601/347 is closer to sqrt(3) than p/q is. %t A265779 x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k]; %t A265779 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265779 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265779 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265779 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265779 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265779 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265779 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *) %t A265779 Numerator[tL] (* A265778 *) %t A265779 Denominator[tL] (* A265779 *) %t A265779 Numerator[tU] (* A265780 *) %t A265779 Denominator[tU] (* A265781 *) %t A265779 Numerator[y] (* A262582 *) %t A265779 Denominator[y] (* A265783 *) %Y A265779 Cf. A000040, A265759, A265778, A265780, A265781, A265782, A265783. %K A265779 nonn,frac,more %O A265779 1,1 %A A265779 _Clark Kimberling_, Dec 20 2015 %E A265779 a(9)-a(11) from _Robert Price_, Apr 05 2019