A265780 Numerators of upper primes-only best approximates (POBAs) to sqrt(3); see Comments.
5, 7, 11, 13, 23, 83, 103, 127, 137, 227, 809, 1093, 1571, 4273, 5333, 16141, 20627, 41519, 56813, 111913
Offset: 1
Programs
-
Mathematica
x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *) Numerator[tL] (* A265778 *) Denominator[tL] (* A265779 *) Numerator[tU] (* A265780 *) Denominator[tU] (* A265781 *) Numerator[y] (* A262582 *) Denominator[y] (* A265783 *)
Formula
The upper POBAs to sqrt(3) start with 5/2, 7/3, 11/5, 13/7, 23/13, 83/47, 103/59. For example, if p and q are primes and q > 47, and p/q > sqrt(3), then 83/47 is closer to sqrt(3) than p/q is.
Extensions
a(16)-a(20) from Robert Price, Apr 05 2019
Comments