This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265782 #10 Apr 05 2019 17:45:51 %S A265782 5,3,5,19,71,601,1571,2579,3691,56813,111913 %N A265782 Numerators of primes-only best approximates (POBAs) to sqrt(3); see Comments. %C A265782 Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. %e A265782 The POBAs to sqrt(3) start with 5/2, 3/2, 5/3, 19/11, 71/41, 601/347, 1571/907. For example, if p and q are primes and q > 347, then 601/347 is closer to sqrt(3) than p/q is. %t A265782 x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k]; %t A265782 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265782 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265782 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265782 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265782 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265782 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265782 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *) %t A265782 Numerator[tL] (* A265778 *) %t A265782 Denominator[tL] (* A265779 *) %t A265782 Numerator[tU] (* A265780 *) %t A265782 Denominator[tU] (* A265781 *) %t A265782 Numerator[y] (* A265782 *) %t A265782 Denominator[y] (* A265783 *) %Y A265782 Cf. A000040, A265759, A265778, A265779, A265780, A265781, A265783. %K A265782 nonn,frac,more %O A265782 1,1 %A A265782 _Clark Kimberling_, Dec 23 2015 %E A265782 a(10)-a(11) from _Robert Price_, Apr 05 2019