cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265785 Denominators of lower primes-only best approximates (POBAs) to sqrt(5); see Comments.

Original entry on oeis.org

2, 3, 5, 13, 73, 89, 233, 1597, 40823, 67273
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to sqrt(5) start with 3/2, 5/3, 11/5, 29/13, 163/73, 199/89, 521/233. For example, if p and q are primes and q > 73, and p/q < sqrt(5), then 163/73 is closer to sqrt(5) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265784 *)
    Denominator[tL] (* A265785 *)
    Numerator[tU]   (* A265786 *)
    Denominator[tU] (* A265787 *)
    Numerator[y]    (* A222588 *)
    Denominator[y]  (* A265789 *)

Extensions

a(9)-a(10) from Robert Price, Apr 05 2019