A265786 Numerators of upper primes-only best approximates (POBAs) to sqrt(5); see Comments.
5, 7, 43, 83, 293, 709, 937, 1259, 2131, 6791, 8951, 12721, 26683, 111667, 154841
Offset: 1
Examples
The upper POBAs to sqrt(5) start with 5/2, 7/3, 43/19, 83/37, 293/131, 709/317, 937/419. For example, if p and q are primes and q > 131, and p/q > sqrt(5), then 293/131 is closer to sqrt(5) than p/q is.
Programs
-
Mathematica
x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *) Numerator[tL] (* A265784 *) Denominator[tL] (* A265785 *) Numerator[tU] (* A265786 *) Denominator[tU] (* A265787 *) Numerator[y] (* A222588 *) Denominator[y] (* A265789 *)
Extensions
a(13)-a(15) from Robert Price, Apr 05 2019
Comments