A265789 Denominators of primes-only best approximates (POBAs) to sqrt(5); see Comments.
2, 2, 3, 5, 13, 73, 89, 233, 1597, 11933, 49939, 67273, 69247
Offset: 1
Examples
The POBAs to sqrt(5) start with 3/2, 5/2, 7/3, 11/5, 29/13, 163/73, 199/89, 521/233. For example, if p and q are primes and q > 89, then 199/89 is closer to sqrt(5) than p/q is.
Programs
-
Mathematica
x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *) Numerator[tL] (* A265784 *) Denominator[tL] (* A265785 *) Numerator[tU] (* A265786 *) Denominator[tU] (* A265787 *) Numerator[y] (* A265788 *) Denominator[y] (* A265789 *)
Extensions
a(10)-a(13) from Robert Price, Apr 05 2019
Comments