This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265791 #10 Apr 06 2019 10:53:54 %S A265791 2,5,7,11,79,127,163,233,2179,3019,3089,8999,11447,12671 %N A265791 Denominators of lower primes-only best approximates (POBAs) to sqrt(8); see Comments. %C A265791 Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p. %C A265791 Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x. %C A265791 For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. %e A265791 The lower POBAs to sqrt(8) start with 5/2, 13/5, 19/7, 31/11, 223/79, 359/127. For example, if p and q are primes and q > 79, and p/q < sqrt(8), then 223/79 is closer to sqrt(8) than p/q is. %t A265791 x = Sqrt[8]; z = 1000; p[k_] := p[k] = Prime[k]; %t A265791 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265791 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265791 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265791 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265791 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265791 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265791 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265794/A265795 *) %t A265791 Numerator[tL] (* A265790 *) %t A265791 Denominator[tL] (* A265791 *) %t A265791 Numerator[tU] (* A265792 *) %t A265791 Denominator[tU] (* A265793 *) %t A265791 Numerator[y] (* A265794 *) %t A265791 Denominator[y] (* A265795 *) %Y A265791 Cf. A000040, A265759, A265790, A265792, A265793, A265794, A265795. %K A265791 nonn,frac,more %O A265791 1,1 %A A265791 _Clark Kimberling_, Dec 29 2015 %E A265791 a(12)-a(14) from _Robert Price_, Apr 06 2019