A265792 Numerators of upper primes-only best approximates (POBAs) to sqrt(8); see Comments.
7, 17, 23, 37, 167, 563, 727, 1123, 1321, 1847, 2803, 4517, 46027, 79657, 85229, 103099, 182657, 199373
Offset: 1
Examples
The upper POBAs to sqrt(8) start with 7/2, 17/5, 23/7, 37/13, 167/59, 563/199, 727/257, 1123/397. For example, if p and q are primes and q > 13, and p/q > sqrt(8), then 37/13 is closer to sqrt(8) than p/q is.
Programs
-
Mathematica
x = Sqrt[8]; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265794/A265795 *) Numerator[tL] (* A265790 *) Denominator[tL] (* A265791 *) Numerator[tU] (* A265792 *) Denominator[tU] (* A265793 *) Numerator[y] (* A265794 *) Denominator[y] (* A265795 *)
Extensions
a(13)-a(18) from Robert Price, Apr 06 2019
Comments