This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265796 #16 Apr 07 2019 00:01:46 %S A265796 3,11,37,163,173,241,571,1231,1571,2351,3571,25463,69247 %N A265796 Numerators of lower primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments. %C A265796 Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p. %C A265796 Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x. %C A265796 For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. %e A265796 The lower POBAs to tau start with 3/2, 11/7, 37/23, 163/101, 173/107, 241/149. For example, if p and q are primes and q > 101, and p/q < tau, then 163/101 is closer to tau than p/q is. %t A265796 x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k]; %t A265796 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265796 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265796 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265796 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265796 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265796 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265796 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *) %t A265796 Numerator[tL] (* A265796 *) %t A265796 Denominator[tL] (* A265797 *) %t A265796 Numerator[tU] (* A265798 *) %t A265796 Denominator[tU] (* A265799 *) %t A265796 Numerator[y] (* A265800 *) %t A265796 Denominator[y] (* A265801 *) %Y A265796 Cf. A000040, A001622, A265759, A265797, A265798, A265799, A265800, A265801. %K A265796 nonn,frac,more %O A265796 1,1 %A A265796 _Clark Kimberling_, Dec 29 2015 %E A265796 a(12)-a(13) from _Robert Price_, Apr 06 2019