A265797 Denominator of lower primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments.
2, 7, 23, 101, 107, 149, 353, 761, 971, 1453, 2207, 15737, 42797
Offset: 1
Examples
The lower POBAs to tau start with 3/2, 11/7, 37/23, 163/101, 173/107, 241/149. For example, if p and q are primes and q > 101, and p/q < tau, then 163/101 is closer to tau than p/q is.
Programs
-
Mathematica
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (*lower POBA*) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (*upper POBA*) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (*POBA,A265800/A265801*) Numerator[tL] (*A265796*) Denominator[tL] (*A265797*) Numerator[tU] (*A265798*) Denominator[tU] (*A265799*) Numerator[y] (*A265800*) Denominator[y] (*A265801*)
Extensions
a(12)-a(13) from Robert Price, Apr 06 2019
Comments