This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265799 #12 Apr 07 2019 00:02:05 %S A265799 2,3,19,29,97,563,631,919,2647,3181,5333,6841,9281,12941,13873,15271, %T A265799 23633,49939 %N A265799 Denominators of upper primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments. %C A265799 Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3. %C A265799 Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n). %C A265799 For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. %e A265799 The upper POBAs to tau start with 5/2, 5/3, 31/19, 47/29, 157/97, 911/563, 1021/631. For example, if p and q are primes and q > 97, and p/q > tau, then 157/97 is closer to tau than p/q is. %t A265799 x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k]; %t A265799 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265799 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265799 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265799 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265799 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265799 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265799 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *) %t A265799 Numerator[tL] (* A265796 *) %t A265799 Denominator[tL] (* A265797 *) %t A265799 Numerator[tU] (* A265798 *) %t A265799 Denominator[tU] (* A265799 *) %t A265799 Numerator[y] (* A265800 *) %t A265799 Denominator[y] (* A265801 *) %Y A265799 Cf. A000040, A001622, A265759, A265796, A265797, A265798, A265800, A265801. %K A265799 nonn,frac,more %O A265799 1,1 %A A265799 _Clark Kimberling_, Dec 29 2015 %E A265799 a(13)-a(18) from _Robert Price_, Apr 06 2019