This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265800 #14 Apr 07 2019 00:02:11 %S A265800 5,3,5,11,31,37,47,157,571,911,1021,1487,2351,3571,24709,25463,69247, %T A265800 80803 %N A265800 Numerators of primes-only best approximates (POBAs) to the golden ratio, tau; see Comments. %C A265800 Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. %C A265800 How is this related to A165572? - _R. J. Mathar_, Jan 10 2016 %e A265800 The POBAs to tau start with 5/2, 3/2, 5/3, 11/7, 31/19, 37/23, 47/29, 157/97, 571/353, 911/563. For example, if p and q are primes and q > 29, then 47/29 is closer to tau than p/q is. %t A265800 x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k]; %t A265800 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265800 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265800 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265800 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265800 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265800 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265800 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *) %t A265800 Numerator[tL] (* A265796 *) %t A265800 Denominator[tL] (* A265797 *) %t A265800 Numerator[tU] (* A265798 *) %t A265800 Denominator[tU] (* A265799 *) %t A265800 Numerator[y] (* A265800 *) %t A265800 Denominator[y] (* A265801 *) %Y A265800 Cf. A000040, A265759, A265796, A265797, A265798, A265799, A265801. %K A265800 nonn,frac,more %O A265800 1,1 %A A265800 _Clark Kimberling_, Dec 29 2015 %E A265800 a(15)-a(18) from _Robert Price_, Apr 06 2019