A265808 Numerators of lower primes-only best approximates (POBAs) to Pi; see Comments.
5, 13, 19, 31, 37, 53, 97, 191, 223, 757, 977, 4483, 5237, 9497, 14423, 18061, 30841, 45751, 47881, 60661, 137341, 162901, 177811, 536273, 557573, 577453, 579583, 609403, 610823, 833719, 43354453, 45230587, 104426411, 111304859, 120059441, 185091653, 821656877, 1302520019
Offset: 1
Examples
The lower POBAs to Pi start with 5/2, 13/5, 19/7, 31/11, 37/13, 53/17, 97/31, 191/61, 223/71, 757/241, 977/311. For example, if p and q are primes and q > 241, and p/q < Pi, then 757/241 is closer to Pi than p/q is.
Programs
-
Mathematica
x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) Numerator[tL] (* A265808 *) Denominator[tL] (* A265809 *) Numerator[tU] (* A265810 *) Denominator[tU] (* A265811 *) Numerator[y] (* A265812 *) Denominator[y] (* A265813 *)
Extensions
More terms from Bert Dobbelaere, Jul 20 2022
Comments